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ABSTRACT 

In order to provide a recommendation on the quality of groundwater in the 

region of Berrechid, Morocco, we analysed the concentration of conductivity as 

one of the main measures to identify the salinity of the water. We applied 

artificial intelligence models for predicting the conductivity of water while 

analysing several physical parameters as input parameters of the models. To 

achieve this purpose, we exploited and evaluated the Random Forest (RF), 

Support Vector Regression (SVR), and k-nearest neighbour models using 400 

data samples related to ten groundwater quality parameters in the Berrechid 

aquifer, Morocco. The results revealed that the overall prediction performance of 

the RF models is higher than the SVR and KNN models. Overall, the developed 

models are able to predict conductivity with high accuracy. The approaches 

developed in this study are promising for real-time and low-cost prediction of 

groundwater quality by using physical parameters as input variables. 

Keywords: Groundwater quality, Artificial Intelligence, Random Forest, 

Support Vector Regression, k-Nearest Neighbour’s. 

 

INTRODUCTION 

Groundwater is one of the most important water sources for agriculture, but 

also for other industries. Groundwater supplies nearly two-thirds of the world's 

population with drinking water and other domestic uses (Adimalla et al., 2018). 

More than 1.5 billion people worldwide rely on groundwater for basic needs such 

as drinking and irrigation (Adimalla and Li 2019). In addition, 946 million people 

lack access to adequate drinking water and have sanitation practices that are not 

clean (UNICEF and WHO 2015). Water availability is one of the most 
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challenging tasks of the 21
st
 century (Adimalla and Qian 2019). Water demand 

has been increasing due to population growth, intensive agriculture, urbanization, 

and industrial expansion in recent years. However, climate change, anthropogenic 

and natural activities have led to a decrease in groundwater quantity and 

degradation of its quality, making it unsuitable for domestic consumption, 

irrigation, and industry (Du et al. 2016; He et al. 2016; Li et al. 2018; 

Khanoranga and Khalid 2019; Su et al. 2019). Recent studies have estimated that 

3.5-4.4 billion people are expected to live with the problem of water supply in 

2050 due to climate change and increasing human water demand (Hanasaki et al. 

2013; Wada et al. 2014). Therefore, assessment and prediction of groundwater 

quality is necessary for effective management and to keep pollution levels within 

allowable limits (Meguid 2019; Najah Ahmed et al. 2019). Conventional process-

based modelling methods provide relatively accurate predictions for water quality 

parameters. Because of this, groundwater experts have focused their efforts on 

determining groundwater quality and suitability for drinking, household, 

irrigation, and industrial uses (Adimalla and Venkatayogi, 2018; Roy et al. 2018; 

Ehya and Saeedi, 2019; Mukate et al., 2019; Das et al., 2020). 

Water quality is based on many indices and parameters adopted to meet 

water needs. Several studies have focused on index and statistical-based 

approaches. Recently, Adimalla et al. (2018) used Water Quality Index (WQI) to 

determine the adequacy of water quality for irrigation. Rao et al. (2018) used a 

groundwater pollution index (GPI) to assess groundwater quality for drinking 

purposes. Dutta et al. (2018) effectively demonstrates the use of WQI and 

multivariate statistical techniques to obtain simpler and more meaningful 

information about water quality and identify pollution sources. These methods 

have been applied to support groundwater quality research and promote various 

groundwater quality assessment and management strategies, all with the 

innovative and intelligent methods of reasonable cost to assess the state of 

groundwater quality. To this end, prediction-based approaches can be useful tools 

to overcome challenges in groundwater planning and management. Nowadays, 

application of artificial intelligence (AI) techniques has increased in many fields. 

In the environmental sciences, researchers proposed intelligent and adaptive 

dynamic water resources planning to preserve the water environment (all surface 

water, groundwater and wetlands) in urban areas (Xiang et al. 2021). Other 

studies conducted a systematic review of the literature on applying different types 

of artificial intelligence models to enable better monitoring of surface water 

quality (Ighalo et al. 2021). In the area of groundwater quality assessment, 

researchers investigated the performance of a few artificial intelligence 

techniques, including particle swarm optimization (PSO), a naive Bayes classifier 

(NBC) as a simple "probabilistic classifiers", and a support vector machine 

(SVM) with the purpose of predicting the water quality index (Agrawal et al. 

2021). Other research scrutinize artificial intelligence technologies for assessing 

source water quality, disinfection, and membrane filtration, including monitoring 
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and identifying source water contaminants (Li et al. 2021). Researchers highlight 

a new approach based on integrating deep learning and feature extraction 

techniques to improve water quality classification (Dilmi and Ladjal, 2021). 

However, several factors are considered in a prediction model, including the 

nature and number of predictors used. Thus, a proper selection of input variables 

is required to increase the efficiency of Machine Learning (ML) models.  

Morocco is a semi-arid Mediterranean country where surface and 

groundwater resources are essential for socio-economic sustainability. 

Consequently, aquifers are heavily exploited to meet increasing agricultural, 

industrial, and demands of local population. In addition, accelerated industrial 

operations, rapid population expansion, and agricultural intensification have led 

to significant groundwater depletion and degradation (Malki et al., 2017). 

Groundwater depletion is a significant problem in Morocco and is of particular 

concern to water managers. Rapid declines in groundwater levels (0.5 to 2 m per 

year on average) is generally caused by low groundwater recharge, marine 

intrusion, and excessive expansion of agricultural activities (Fadili et al., 2015; 

Najib et al., 2016; Ait Kadi and Ziyad, 2018; Alabjah et al., 2018; Mountadar et 

al., 2018; Bilali et al., 2021; Moukhliss et al., 2021; Zeynolabedin et al., 2021). 

Studied areas represent typical cases and are strongly impacted by climate 

variability, anthropogenic activity, and marine intrusion. In this case, the most 

important problems affecting groundwater recharge are intermittent river flow, 

decreasing reservoir capacity, the release of water by dams, removal of 

groundwater by pumping, soil salinity in irrigated areas. Despite these problems, 

the area remains an excellent example of effective quantitative and qualitative 

management of groundwater resources in integrated water resources 

management. 

The main objectives of this study are: (1) predicting water conductivity 

using several physical parameters as model input parameters; with (2) comparing 

the performance of four models, including Random Forest, Support Vector 

Regression (SVR) and Machine learning (ML). 

 

MATERIAL AND METHODS 

Study area 

The Berrechid aquifer is located in the Atlantic coastal basin between 

Rabat and Azemmour. It is around 10,470 km
2
 in size (Royaume du Maroc, 

2003). This aquifer is situated in the south of Casablanca. It differs from other 

aquifers in the region due to its enormous surface area of around 1,500 km
2
. It is 

part of the quadrilateral formed by Settat, El Gara, Mediouana, and the center of 

Bouskoura (Figure 1).  

This is a semi-arid region with annual rainfall ranging between 280 and 

320 mm, with more than 90% falling between October and April. The 

temperature varies from 6.5 °C in January to 38 °C in August (Lyazidi et al., 

2003; El Gasmi et al., 2014). 
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Figure 1. Study area and monitoring station 

The basin is endorheic, having no outflow to an external body of water 

such as a river or ocean, and only losing water through evaporation or seepage 

into the ground; it is naturally fed by rainfall and streams that enter through the 

south and disappear below the plain (Moullard, 1960). The basin is flat in 

topography, with altitudes and slopes varying from 140 m and 0.2 % in the North 

to 350 m and 0.8% in the South (Naïma et al., 2015). In semi-arid climatic 

contexts, numerous geological formations were formed, combined with ancient 

subsidences and sedimentations spanning from primary to quaternary deposits. 

Nevertheless, the lithostratigraphic succession of these formations is as follows:  

1) Primary, the bedrock consists of shale interbedded with layers of 

quartzite and sandstone, with 150 m thick outcrops Siluro-Devonian and Acadian 

Green to the SE and NW (El Mansouri, et al, 1992);  

2) Triassic: Saline and siliciclastic red clays are interbedded with evaporite 

and basalt in these deposits. They are distributed in the eastern part of the aquifer 

(Bensalah et al., 2011);  

3) The Infra-Cenomanian: with a total depth of about 40 m, including 

detrital red clays and gypsum abundant in the deposits. Layers of limestone and 

white succeeded some layers of the yellow marl conglomerate;  

4) The Cenomanian, predominantly made up of dolomitic limestone and 

yellow marl, with green marl intercalated across a thickness of roughly 120 m 

(Ruhard 1975);  

5) Pliocene that set the Berrechid aquifer system made up of sandstone, 

sand, sandy limestone, and small conglomerates with a total thickness of 5 to 40 

m (Droubi et al. 2008);  

6) Quaternary: The dominating facies is characterized by silts and 

conglomerates, which are followed by red silty clays, pebbles, and gravels with 

thicknesses varying from 0 to 50 m. As far as water quality is concerned, this 
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water table is classified into three hydro-geochemical facies (Na-Cl; Na-Mg-Ca-

Cl; Ca-Mg-HCO3-Cl). This region is marked by fertile soils and productive water 

tables, which causes the depletion of the water tables and the degradation of 

water quality, the latter becoming non-compliant with the consumption standard 

(El Ghali et al., 2020). Farmers mainly consume water for market gardening and 

livestock (Ouassissou et al., 2019). Water quality is monitored by the Bouregreg 

and Chaouia Basin Agency through fourteen monitoring stations. 

 

Machine learning models 

The models used are the Random Forest, Support Vector Regression 

(SVR), and KNN approaches.  

Random Forest. It is a supervised machine learning algorithm that is 

hugely used in many classification and regression problems. It consists in 

building decision trees on different samples and takes their majority vote for 

classification and the mean in the case of regression. The concept of the sample 

with training data replacement is considered in each decision tree, also based on 

the bagging (Random forests: from early developments to recent advancements). 

The Random Forest offers several advantages: (a) Generally, the accuracy of 

Random Forest is considerably better than other types of decision trees. (b) The 

speed of Random Forest is high compared to bagging and boosting. (c) The 

estimates are significant in terms of error and correlation.  

A large number of decision trees are the subject of the Random Forest. In 

both the construction and selection processes of the sample subsets, the random 

process is integrated to guarantee certain independence of each decision tree, thus 

improving the accuracy and performance of the model (A Review on Random 

Forest: An Ensemble Classifier). The following diagram (Figure 2) gives a brief 

description of the Random Forest model (K. Liu et al., 2021): 

 
Figure 2. Random Forest process 
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K-nearest neighbors – KNN. The algorithm is a Machine Learning 

algorithm (Peterson 2009) belonging to the class of simple supervised learning 

algorithms, easy to implement, and can solve classification and regression 

problems. The KNN algorithm consists of two primary steps: 

Step 1: Select the number K of neighbors. 

Step 2: Calculate the distance, the Manhattan distance or the Euclidean distance.  
Step 3: Take the K nearest neighbors according to the calculated distance. 

Step 4: Among K neighbors, count number of points belonging to each category. 

Step 5: Assign the new point to the most present category among K neighbors. 

Several methods can be effective in determining the value of K. Generally, 

several values of K are tested to obtain the most effective value. Usually, the K 

number is increased. This defines the nearest neighbor region and brings more 

clarity and transparency to the results. However, when the data dispersion is a 

problem, the value is difficult to specify. The diagram of the KNN algorithm 

summarizes all the steps (Figure 3).  

  
Figure 3. KNN process 

 

Support vector regression SVR. It is an evolution of support vector 

classification to perform regression tasks. To perform this task, the ε-insensitive 

loss function is implemented to analyze the data.  
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Data collection and analysis. As part of this research, four hundred quality 

samples were collected at the following monitoring sites in the Berrechid aquifer. 

The sample methodology was carried out twice in the spring and summer during 

irrigation pumping. The wells varied in depth from 40 to 140 meters. All of the 

wells are utilized on a regular basis for residential usage, irrigation, and industrial 

purposes.  

For sample collection, we utilized one-liter polyethylene bottles that had 

been prewashed and labeled. The following parameters were measured in these 

samples: Electrical Conductivity (EC), Chlorides (Cl
-
), Calcium (Ca

2+
), 

Magnesium (Mg
2+

), pH, Sulfate (SO4
2-

), Sodium (Na
+
), Potassium (K

+
), 

Carbonates (CO3
2-

), and Bicarbonates (HCO3
-
). The collecting points' location 

coordinates (X, Y coordinates) were determined using a portable global 

positioning system (GPS). The samples are sent immediately to the laboratory for 

analysis. 

Conductivity was measured with an intelligent conductivity meter YK-

2001PH. The determination of chloride was achieved by the MOHR method, 

according to AFNOR 90-014. The determination of bicarbonate and carbonate 

was carried out by the titration method in the presence of H2SO4 (0.02 N), a 

solution of NaOH (0.1 N), phenolphthalein and methyl orange indicator. The 

sulfate determination was performed using the spectrophotometric method 

(Shimadzu UV 1800 model). The determination of potassium was conducted by a 

flame photometer (Elico flame photometer model CL 22 B) and KCl reagents. 

Sodium was determined by a flame photometer (Elico flame photometer model 

CL 22 B) and by NaCl reagent. Calcium was determined by EDTA titrimetric 

analysis. The magnesium determination was performed by TH and Ca 

concentration. The solutions' hydrogen potential (pH) was determined by a 

"Accumet Basic AB15" pH meter. 

 

Data processing and model performance evaluation methods. From an 

analysis of all the parameters, there are aberrant values on almost all the 

parameters. Therefore, it is important to analyze the data before entering it. 

Indeed, data exploration and cleaning are among the main steps to obtaining 

efficient models. Moreover, in ML model development, data mining and cleaning 

are the significant steps to obtaining accurate and reliable models. In this study, 

data pre-processing was performed in several steps:  

Step 1: Checking for outliers and missing values. In our database, there are 

two scenarios. The first scenario concerns outliers. An outlier is a value or 

observation that is "distant" from other observations made on the same 

phenomenon, i.e. it contrasts significantly with the "normally" measured values. 

Therefore, any value that appears to be an outlier in the database should be 

removed. They can either be replaced for missing values the row related to the 

missing data can be deleted. Since there are only two missing values in our case, 

we chose to delete the other data related to these missing values. 
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Step 2: A complete description of the different parameters involved. This 

step consists of making a complete description of all the parameters we consider 

in creating the machine learning models. This first description includes the 

evolution of each parameter and the min, max, average and median values, etc. A 

general view, but also diagrams showing the range for each parameter. This is 

achieved firstly through graphs visualizing the data for each variable. Figure 4 

illustrates the following variables: CE, pH, Cl
-
, SO4

2-
, Na

+
, K

+
, CO3

2-
, HCO3

-
, 

Ca
2+

, Mg
2+

. In the conductivity, for example (CE), there are places where the 

conductivity is significantly high and where the conductivity remains very 

limited. This creates ups and downs throughout the graph. This applies to all 

variables. However, there are variables where the values remain more or less like 

K
+
 and CO3

2-
.  
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Figure 4. Plots of the raw data related to ten parameters 

(X line represents the identification of samples while Y line represents the parameters) 
 

The boxplot of the variables (Fig. 5) presents the evolution of the different 

variables, focusing mainly on the first quartile, the third quartile, etc. According 

to the obtained boxplot, 25% of the conductivities are between 0 and below 2000. 

However, the other values exceed 2000. pH and CO3
2-

, on the other hand, take the 

lowest values among all the variables.  

In a third step, we made a general description of the variables using the 

following characteristics (Table 1): minimum, maximum, first quartile, median, 

average, third quartile, and maximum. The variables with the lowest minimum 

values are CO3
2-

 and pH, and the highest maximum values are Ca
2+

 and Cl
-
.  
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Figure 5. Boxplots of the used variables in the database. 

 

Table 1. Descriptive statistical characteristics of the used variables. 
 CE pH Cl

-
 SO4

2+
 Na

+
 K

+
 CO3

2
- HCO3

-
 Ca

+
 Mg

2+
 

Min 7.54 0.2 12 11 5 0.29 0 26 11.2 3.68 

1st 

Quartile 
1595 7.138 276.2 64.67 124 1.157 0 244 102.8 37.83 

Median 3014 7.3 867 117.5 349 2.640 0 305 154 101 

Mean 3193 7.32 947.3 140.11 406.2 7.191 0.1159 323.3 171.6 109.07 

3rd 

Quartile 
4240 7.6 1352.8 174.75 604 4.030 0 363.8 212.0 155.5 

Max 12835 8.7 4603 723 1595 542 9.76 1037 697 486 

 

Step 3: Training and model validation process. In Machine Learning, and 

to prove the performance and reliability of an ML model, the database is divided 

into two main parts: The first part is dedicated to creating the ML model and the 

second part is dedicated to validating the model. Generally, the percentage of data 

dedicated to validation is between 20% and 30%. 
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Metric evaluation models. Model performance is evaluated using three 

statistical criteria: correlation coefficient (Asuero et al., 2006), root mean square 

error (RMSE) (Wang and Lu, 2018) and accuracy (Yin et al., 2019). 

Correlation coefficient formulas are used to determine the strength of a 

relationship between data. The formulas return a value between -1 and 1, where: 

1 indicates a strong positive relationship, -1 indicates a strong negative 

relationship. A result of zero indicates that there is absolutely no relationship 

whatsoever (Eq. (2)): 

 

 
 

RMSE is the square root of the variance of the residual errors (Eq. (3)). The lower 

value of the RMSE compared to the output ranges indicates a better fit of the 

model. 

 

 
 

Machine learning model accuracy is used to determine which model best 

identifies relationships and patterns between variables in a dataset based on the 

input or training data. Accuracy is defined as follows (Eq. (4)): 

 

 
 
 
 

RESULTS AND DISCUSSION 
Exploratory data analysis 

A correlation matrix and evaluation of the input variables' significance 

were performed for further exploration of the variable. Table 2 shows the matrix 

correlation. Figure 8 highlights the correlation plot. Our purpose is to predict the 

conductivity as a function of the other parameters: a complete description of the 

different parameters involved in the study.  

The results revealed that the conductivity (CE) has a strong correlation 

with the parameters Cl
- 

(0.92), Na
+
 (0.91) and Mg

2+
 (0.87) and a moderate 

correlation with the parameters SO4
2-

 (0.58) and Ca
2+

 (0.6). However, the 

conductivity correlates poorly with the parameters pH (0.06), K
+
 (0.26), CO3

2-
 (-

0.008) and HCO3
-
 (0.17). These results indicate that the variables Cl

-
, Na

+
, Mg

2+
, 

SO4
2-

 and Ca
2+

 better predict the conductivity. Although the other parameters are 

less correlated with the conductivity, they are needed to improve the prediction 

accuracy of the ML models. 
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Table 2. Correlation matrix of the used variables 

 CE pH Cl- SO4
2+ Na+ K+ CO3

2- HCO3
- Ca+ Mg2+ 

CE 1 0.0606 0.925 0.583 0.919 0.26 -0.008 0.17 0.607 0.87 

pH 0.06 1 0.062 -0.038 0.111 -0.017 -0.013 0.039 -0.071 0.05 

Cl- 0.92 0.062 1 0.507 0.908 0.27 0.013 0.084 0.616 0.89 

SO4
2+ 0.583 -0.03 0.507 1 0.541 0.024 -0.049 0.076 0.616 0.55 

Na+ 0.9190.111 0.111 0.908 0.541 1 0.293 0.035 0.185 0.475 0.797 

K+ 0.261 -0.0179 0.27 0.024 0.293 1 -0.015 0.232 0.071 0.034 

CO3
2- -0.008 -0.0137 0.0135 -0.049 0.035 -0.0156 1 -0.0899 -0.122 0.004 

HCO3
- 0.17 0.00396 0.0842 0.076 0.185 0.232 -0.089 1 0.094 0.052 

Ca+ 0.607 -0.071 0.616 0.6168 0.475 0.071 -0.122 0.094 1 0.608 

Mg2+ 0.873 0.0523 0.89 0.554 0.797 0.0344 0.004 0.052 0.608 1 

  

Simulated and real values. This part is dedicated to schematizing the 

simulated values created by the different models and comparing them to the real 

conductivity values in part dedicated to the validation. For example, starting with 

the Random Forest (Fig. 6), it turns out that a large percentage of the simulated 

values coincide with the actual values, except for a few points that deviate 

sharply and remarkably.  

 
Figure 6. Scatter plots of the observed and simulated values for predicting the 

conductivity using the Random Forest Model 
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For the SVR model (Fig. 7), it is likewise found that several predicted 

values coincide approximately with real values, which shows a remarkable ability 

of the model to predict the conductivity in the groundwater. However, there are 

some locations where there is a considerable discrepancy between the predicted 

and actual values, especially in the last part of the plot.  

 
Figure 7. Scatter plots of the observed and simulated values for predicting 

the conductivity using the SVR Model 

  

For the KNN model (Fig. 8), we notice that the points are more scattered 

compared to the model considering the RF. In addition, several points are far 

away from the actual values, namely the last points.  

 
Figure 8. Scatter plots of the observed and simulated values for predicting the 

conductivity using the KNN Model 
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If we compare the three figures, we can see that the RF model is the model 

with the most overlap between the predicted and actual values. Most of the points 

rotate around the X=Y line, proving that this model can predict the conductivity 

with a high accuracy depending on the selected parameters. 

 
General results 

Before the training phase, the selected data were organized in a CSV file 

for processing. Thus, they were divided into two datasets: 372 samples were used 

for the training process and 93 samples were run in the validation phase. Then, 

the ML models were built in Spyder using the anaconda platform. In this sense, 

the evaluation metrics are measured by comparing the outputs of the validation 

part generated by the created model and the actual outputs. By comparing the 

two, we will be able to specify which model or algorithm performs better in terms 

of correlation, squared error and accuracy (Fig. 9).  

  

  
Fig. 9. The correlation plot of the used variables 

  

Table 3 represents the RMSE, R-values and accuracy of the models during 

the training process. These results reveal that the RF model yields the best result 

in correlation r with a value of 0.966 compared to a value of 0.949 for the KNN 

algorithm and a value of 0.825 for the SVR model. For the value of RSME, we 
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calculated the normalized RMSE (Eq. (5)) using the following formula with y is 

the output parameter (Conductivity). 

 

  
 

The smaller the RMSE value, the lower the error rate and the ML model 

performs better. Through this indication, we can see that in terms of RMSE, the 

RF model performs better with an RMSE of 0.042 against an RMSE value of 

0.082 for the KNN and a value of 0.102 for the SVR. Regarding accuracy, the RF 

model is the most accurate among the three models. The KNN algorithm provides 

an accuracy of 85.56% against accuracy of 83.86% for the SVR model.   

 

Table 3. Evaluation metrics for RF, SVR and KNN models  

Statistical 

indices 

Random Forest 

(RF) 

Support Vector 

Regression (SVR) 

K-Nearest 

Neighbor (KNN) 

Correlation r 0.966 0.825 0.949 

RSME 0.042 0.102 0.082 

Accuracy 89.19 % 83.86 % 85.56 % 

  

Field practical implication in water management 
Our study built and validated ML models to predict the conductivity using 

several parameters as predictors: pH, Cl
-
, K

+
, Na

+
, etc. Following the results of 

this study, the ML models have proven to be accurate and robust in predicting 

conductivity (Table 3). In addition, we opted for several evaluation measures. 

These analyses reveal that the capabilities of the RF and KNN models are 

significantly higher than the SVR model in the present study. In terms of 

correlation and squared error and accuracy, the RF performs better. For the SVR, 

we notice a high mean square error of 0.102, which presents a difference of more 

than 50% between the RF and the SVR in terms of square error. The objective of 

this paper was to predict the conductivity level to assess the groundwater quality 

with the minimum costs. 

To measure the conductivity of Water, it requires a whole measurement 

process and equipment such as a probe or a conductivity meter. The basic 

principle of conductivity measurement consists of several steps: the measuring 

instrument applies an electrical voltage to the solution to be measured. An electric 

current flows according to the conductivity. Depending on the method or 

application, either the meter applies a constant voltage. It records the change in 

electric current, or the meter applies a constant current and evaluates the voltage 

change. In addition to the measuring equipment costs, there is also the necessity 

to maintain the equipment. Indeed, wear and tear and dirt reduce its reliability and 

introduce measurement errors. A regular calibration allows detecting of 

unreliable components. It restores them to their normal state, for example, by 

cleaning them. Non-maintenance can therefore cause divergent measurements 
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and thus a dispersion of the measurements. Cleaning is also a possible cost of 

measuring the conductivity of Water. Cleaning can be achieved with hot Water or 

vinegar. All this leads to a set of costs and expenses that is summarized in the 

following equation (Eq( 6)): 

 

 
 

Equation 5 highlights the high cost of measuring the conductivity degree. 

Our study, leveraging Machine Learning models, allows us to reduce these costs 

distinctively, with high accuracy and performance.  
 

CONCLUSION 

In this paper, our objective was to predict the conductivity contributing in 

the evaluation of grounded water quality as a function of several parameters such 

as: Mg2+, Na+, Cl-... In this perspective, we used several ML models using 

several input parameters. Also, we performed a statistical description that 

calculates the correlation matrix and the different measurements of each variable. 

Therefore, Random Forest, SVR and KNN models were developed and evaluated 

to predict the conductivity using several input parameters. This study leads to 

several results:  

ML models based on several input parameters are All three models (RF, 

SVR and KNN) produced a correlation more significant than 80%. 

All three models (RF, SVR and KNN) give more than 80% accuracy. 

The RF model generates more significant results compared to the other 

models.  

The ML models allowed us to predict the conductivity with high accuracy 

and low error as a function of several other parameters.  

The models created to minimize the costs of measuring conductivity with 

special equipment are highly effective tools. Therefore, they should be 

recommended to predict water quality parameters. These models will improve 

groundwater quality monitoring for irrigation purposes in real-time and at a low 

cost. 
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